Effect of topology on the transport properties of two interacting dots
V. Apel,
M. Davidovich,
E. Anda (),
G. Chiappe and
C. Busser
The European Physical Journal B: Condensed Matter and Complex Systems, 2004, vol. 40, issue 4, 365-369
Abstract:
The transport properties of a system of two interacting dots, one of them directly connected to the leads constituting a side-coupled configuration (SCD), are studied in the weak and strong tunnel-coupling limits. The conductance behavior of the SCD structure has new and richer physics than the better-studied system of two dots aligned with the leads (ACD). In the weak coupling regime and in the case of one electron per dot, the ACD configuration gives rise to two mostly independent Kondo states. In the SCD topology, the inserted dot is in a Kondo state while the side-connected one presents Coulomb blockade properties. Moreover, the dot spins change their behavior, from an antiferromagnetic coupling to a ferromagnetic correlation, as a consequence of the interaction with the conduction electrons. The system is governed by the Kondo effect related to the dot that is embedded into the leads. The role of the side-connected dot is to introduce, when at resonance, a new path for the electrons to go through giving rise to the interferences responsible for the suppression of the conductance. These results depend on the values of the intra-dot Coulomb interactions. In the case where the many-body interaction is restricted to the side-connected dot, its Kondo correlation is responsible for the scattering of the conduction electrons giving rise to the conductance suppression. Copyright Springer-Verlag Berlin/Heidelberg 2004
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2004-00283-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:40:y:2004:i:4:p:365-369
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2004-00283-9
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().