EconPapers    
Economics at your fingertips  
 

Thermodynamics and phase transitions in dissipative and active Morse chains

A. P. Chetverikov, W. Ebeling () and M. G. Velarde

The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 44, issue 4, 509-519

Abstract: We study the evolution of a simple one-dimensional chain of N=4 particles with Morse interactions and periodic boundary conditions which are imbedded into a heat bath creating dissipation and noise. The investigation is concentrated on thermodynamic properties for equilibrium, near-equilibrium and far-equilibrium conditions. For the thermodynamic equilibrium, created by white noise and passive friction obeying Einstein’s fluctuation dissipation relation, we find a standard phase diagram. By applying active friction forces the system is driven to stationary non-equilibrium states, creating conditions where various self-sustained oscillations are excited. Thermodynamic quantities like energy, pressure and entropy are calculated near equilibrium, around a critical distance from equilibrium and far from equilibrium. We observe maximal order (minimum entropy) in certain region of the noise temperature, a phenomenon which is reminiscent of stochastic resonance. With increasing distance from equilibrium new “phases” corresponding to the existence of several attractors of the dynamical stem appear. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00151-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:44:y:2005:i:4:p:509-519

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2005-00151-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:44:y:2005:i:4:p:509-519