Eddy diffusivity in convective hydromagnetic systems
M. Baptista (),
S. M.A. Gama and
V. A. Zheligovsky
The European Physical Journal B: Condensed Matter and Complex Systems, 2007, vol. 60, issue 3, 337-351
Abstract:
An eigenvalue equation, for linear instability modes involving large scales in a convective hydromagnetic system, is derived in the framework of multiscale analysis. We consider a horizontal layer with electrically conducting boundaries, kept at fixed temperatures and with free surface boundary conditions for the velocity field; periodicity in horizontal directions is assumed. The steady states must be stable to short (fast) scale perturbations and possess symmetry about the vertical axis, allowing instabilities involving large (slow) scales to develop. We expand the modes and their growth rates in power series in the scale separation parameter and obtain a hierarchy of equations, which are solved numerically. Second order solvability condition yields a closed equation for the leading terms of the asymptotic expansions and respective growth rate, whose origin is in the (combined) eddy diffusivity phenomenon. For about 10% of randomly generated steady convective hydromagnetic regimes, negative eddy diffusivity is found. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007
Keywords: 47.65.-d Magnetohydrodynamics and electrohydrodynamics; 47.10.-g General theory in fluid dynamics; 47.27.-i Turbulent flows (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2007-00351-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:60:y:2007:i:3:p:337-351
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2007-00351-8
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().