Two-parameter bifurcation and energy consumption analysis of the macro traffic flow model
Lixia Duan (),
Shuangshuang Fan (),
Danyang Liu () and
Zhonghe He ()
Additional contact information
Lixia Duan: North China University of Technology
Shuangshuang Fan: North China University of Technology
Danyang Liu: Beijing Institude of Technology
Zhonghe He: North China University of Technology
The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 12, 1-12
Abstract:
Abstract Bifurcation of traffic flow involves complex dynamic characteristics of the system. In order to understand the complex traffic phenomenon, this work designed a macro traffic model considering the driver’s memory which plays an important role in the traffic flow. Based on this model, we investigate the effects of the driver’s memory and wave velocity on the stability of the traffic flow. By means of one and two parameter bifurcation analysis, we explore how these parameters affect the bifurcation structure of the system, and further investigate the dynamic mechanisms of traffic flow. We explain various traffic phenomena related to the different types of equilibrium points and limit cycles by phase plane analysis. We also study how the initial density and bifurcation structure affect the energy consumption in the system. The results show that the driver’s memory and wave velocity play an important role in the stability of the traffic flow. By considering the change of bifurcation structure, we can better understand the source of traffic congestion, and further predict and control the possible traffic congestion. Graphic abstract
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00469-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:12:d:10.1140_epjb_s10051-022-00469-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-022-00469-9
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().