EconPapers    
Economics at your fingertips  
 

Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study

Arpit Bhardwaj and Phanish Suryanarayana ()
Additional contact information
Arpit Bhardwaj: College of Engineering, Georgia Institute of Technology
Phanish Suryanarayana: College of Engineering, Georgia Institute of Technology

The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 3, 1-9

Abstract: Abstract We study the electromechanical response of Janus transition metal dichalcogenide (TMD) nanotubes from first principles. In particular, considering both armchair and zigzag variants of 18 select Janus TMD nanotubes that are identified as stable, we determine the change in bandgap and charge carriers’ effective mass upon (tensile) axial and torsional deformations using density functional theory (DFT). We observe that metallic nanotubes remain unaffected, whereas the bandgap in semiconducting nanotubes decreases linearly and quadratically with axial and shear strains, respectively, leading to semiconductor–metal transitions. In addition, we find that there is a continuous decrease and increase in the effective mass of holes and electrons with strains, respectively, leading to n-type–p-type semiconductor transitions. We show that this behavior is a consequence of the rehybridization of orbitals, rather than charge transfer between the atoms. Overall, mechanical deformations form a powerful tool for tailoring the electronic response of semiconducting Janus TMD nanotubes. Graphical abstract

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00319-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:3:d:10.1140_epjb_s10051-022-00319-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-022-00319-8

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:95:y:2022:i:3:d:10.1140_epjb_s10051-022-00319-8