Infinite strange non-chaotic attractors in a non-autonomous jerk system
Prasina Alexander,
Balamurali Ramakrishnan,
D. Chandrasekhar and
Karthikeyan Rajagopal ()
Additional contact information
Prasina Alexander: Chennai Institute of Technology
Balamurali Ramakrishnan: Vemu Institute of Technology
D. Chandrasekhar: Vemu Institute of Technology
Karthikeyan Rajagopal: Chennai Institute of Technology
The European Physical Journal B: Condensed Matter and Complex Systems, 2023, vol. 96, issue 10, 1-10
Abstract:
Abstract This research delves into the intricate relationship between two fascinating phenomena: megastability and strange non-chaotic attractors (SNAs). The study centers on a 4D jerk system that incorporates an additional periodic force, aiming to unravel the interplay between these phenomena and shed light on the underlying mechanisms. By manipulating a control parameter, the system's behavior reveals a spectrum of attractors, including the torus, strange non-chaotic attractors, and chaotic states. This diversity underscores the system’s complexity and responsiveness to parameter changes. To validate the observed megastability, the research employs rigorous analytical techniques. Phase portraits visually capture the system’s trajectories in its state space, while Poincaré sections reveal its periodic behavior. Basin of attraction analysis provides insights into the reliability of the observed megastable behavior. The study then delves into the transitions between these attractors. Bifurcation analysis identifies critical parameter values where the system’s dynamics change qualitatively, while Lyapunov exponents quantify the system's sensitivity to initial conditions. The presence and attributes of complex behavior of the system are confirmed through power spectrum analysis, the exploration of nearby point separations, and the identification of singular continuous spectrum patterns. In conclusion, this comprehensive investigation unveils the intricate fusion of complex behaviors within the 4D jerk system. The study's methodologies, ranging from validation to transition analysis and confirmation of these intricate properties, deepen our understanding of complex dynamical systems. Graphical abstract Infinite strange non-chaotic attractors.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-023-00603-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:96:y:2023:i:10:d:10.1140_epjb_s10051-023-00603-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-023-00603-1
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().