EconPapers    
Economics at your fingertips  
 

A credit risk assessment model based on SVM for small and medium enterprises in supply chain finance

Lang Zhang (), Haiqing Hu () and Dan Zhang ()
Additional contact information
Lang Zhang: School of Economics and Administration, Xi’an University of Technology
Haiqing Hu: School of Economics and Administration, Xi’an University of Technology
Dan Zhang: School of Economics and Administration, Xi’an University of Technology

Financial Innovation, 2015, vol. 1, issue 1, 1-21

Abstract: Abstract Background Supply chain finance (SCF) is a series of financial solutions provided by financial institutions to suppliers and customers facing demands on their working capital. As a systematic arrangement, SCF utilizes the authenticity of the trade between (SMEs) and their “counterparties”, which are usually the leading enterprises in their supply chains. Because in these arrangements the leading enterprises are the guarantors for the SMEs, the credit levels of such counterparties are becoming important factors of concern to financial institutions’ risk management (i.e., commercial banks offering SCF services). Thus, these institutions need to assess the credit risks of the SMEs from a view of the supply chain, rather than only assessing an SME’s repayment ability. The aim of this paper is to research credit risk assessment models for SCF. Methods We establish an index system for credit risk assessment, adopting a view of the supply chain that considers the leading enterprise’s credit status and the relationships developed in the supply chain. Furthermore, We conducted two credit risk assessment models based on support vector machine (SVM) technique and BP neural network respectly. Results (1) The SCF credit risk assessment index system designed in this paper, which contained supply chain leading enterprise’s credit status and cooperative relationships between SMEs and leading enterprises, can help banks to raise their accuracy on predicting a small and medium enterprise whether default or not. Therefore, more SMEs can obtain loans from banks through SCF. (2) The SCF credit risk assessment model based on SVM is of good generalization ability and robustness, which is more effective than BP neural network assessment model. Hence, Banks can raise the accuracy of credit risk assessment on SMEs by applying the SVM model, which can alleviate credit rationing on SMEs. Conclusions (1)The SCF credit risk assessment index system can solve the problem of banks incorrectly labeling a creditworthy enterprise as a default enterprise, and thereby improve the credit rating status in the process of SME financing. (2)By analyzing and comparing the empirical results, we find that the SVM assessment model, on evaluating the SME credit risk, is more effective than the BP neural network assessment model. This new assessment model based on SVM can raise the accuracy of classification between good credit and bad credit SMEs. (3)Therefore, the SCF credit risk assessment index system and the assessment model based on SVM, is the optimal combination for commercial banks to use to evaluate SMEs’ credit risk.

Keywords: SCF; SMEs; Credit risk assessment; SVM; BP Neural Network Technique (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://link.springer.com/10.1186/s40854-015-0014-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:1:y:2015:i:1:d:10.1186_s40854-015-0014-5

Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589

DOI: 10.1186/s40854-015-0014-5

Access Statistics for this article

Financial Innovation is currently edited by J. Leon Zhao and Zongyi

More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:fininn:v:1:y:2015:i:1:d:10.1186_s40854-015-0014-5