Which return regime induces overconfidence behavior? Artificial intelligence and a nonlinear approach
Esra Alp Coşkun,
Hakan Kahyaoglu () and
Chi Keung Lau
Additional contact information
Hakan Kahyaoglu: Dokuz Eylul University, Dokuzcesmeler Yerleskesi Buca-Izmir
Financial Innovation, 2023, vol. 9, issue 1, 1-34
Abstract:
Abstract Overconfidence behavior, one form of positive illusion, has drawn considerable attention throughout history because it is viewed as the main reason for many crises. Investors’ overconfidence, which can be observed as overtrading following positive returns, may lead to inefficiencies in stock markets. To the best of our knowledge, this is the first study to examine the presence of investor overconfidence by employing an artificial intelligence technique and a nonlinear approach to impulse responses to analyze the impact of different return regimes on the overconfidence attitude. We examine whether investors in an emerging stock market (Borsa Istanbul) exhibit overconfidence behavior using a feed-forward, neural network, nonlinear Granger causality test and nonlinear impulse-response functions based on local projections. These are the first applications in the relevant literature due to the novelty of these models in forecasting high-dimensional, multivariate time series. The results obtained from distinguishing between the different market regimes to analyze the responses of trading volume to return shocks contradict those in the literature, which is the key contribution of the study. The empirical findings imply that overconfidence behavior exhibits asymmetries in different return regimes and is persistent during the 20-day forecasting horizon. Overconfidence is more persistent in the low- than in the high-return regime. In the negative interest-rate period, a high-return regime induces overconfidence behavior, whereas in the positive interest-rate period, a low-return regime induces overconfidence behavior. Based on the empirical findings, investors should be aware that portfolio gains may result in losses depending on aggressive and excessive trading strategies, particularly in low-return regimes.
Keywords: Overconfidence; Nonlinear Granger causality; Artificial intelligence; Feed-forward neural networks; Nonlinear impulse-response functions; Local projections; Return regime (search for similar items in EconPapers)
JEL-codes: C45 G15 G41 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1186/s40854-022-00446-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00446-2
Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589
DOI: 10.1186/s40854-022-00446-2
Access Statistics for this article
Financial Innovation is currently edited by J. Leon Zhao and Zongyi
More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().