EconPapers    
Economics at your fingertips  
 

Blockchain technology-based FinTech banking sector involvement using adaptive neuro-fuzzy-based K-nearest neighbors algorithm

Husam Rjoub, Tomiwa Sunday Adebayo () and Dervis Kirikkaleli
Additional contact information
Tomiwa Sunday Adebayo: Cyprus International University

Financial Innovation, 2023, vol. 9, issue 1, 1-23

Abstract: Abstract The study aims to investigate the financial technology (FinTech) factors influencing Chinese banking performance. Financial expectations and global realities may be changed by FinTech’s multidimensional scope, which is lacking in the traditional financial sector. The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization. The future of FinTech will be shaped by technologies like the Internet of Things, blockchain, and artificial intelligence. The involvement of these platforms in financial services is a major concern for global business growth. FinTech is becoming more popular with customers because of such benefits. FinTech has driven a fundamental change within the financial services industry, placing the client at the center of everything. Protection has become a primary focus since data are a component of FinTech transactions. The task of consolidating research reports for consensus is very manual, as there is no standardized format. Although existing research has proposed certain methods, they have certain drawbacks in FinTech payment systems (including cryptocurrencies), credit markets (including peer-to-peer lending), and insurance systems. This paper implements blockchain-based financial technology for the banking sector to overcome these transition issues. In this study, we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’ algorithm. The chaotic improved foraging optimization algorithm is used to optimize the proposed method. The rolling window autoregressive lag modeling approach analyzes FinTech growth. The proposed algorithm is compared with existing approaches to demonstrate its efficiency. The findings showed that it achieved 91% accuracy, 90% privacy, 96% robustness, and 25% cyber-risk performance. Compared with traditional approaches, the recommended strategy will be more convenient, safe, and effective in the transition period.

Keywords: FinTech; Economic growth; Blockchain technology; Adaptive neural fuzzy based KNN algorithm; Rolling window autoregressive lag modelling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1186/s40854-023-00469-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00469-3

Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589

DOI: 10.1186/s40854-023-00469-3

Access Statistics for this article

Financial Innovation is currently edited by J. Leon Zhao and Zongyi

More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00469-3