EconPapers    
Economics at your fingertips  
 

Predicting the returns of the US real estate investment trust market: evidence from the group method of data handling neural network

Wendi Zhang (), Bin Li, Alan Wee-Chung Liew, Eduardo Roca and Tarlok Singh
Additional contact information
Wendi Zhang: Griffith University, Nathan Campus
Bin Li: Griffith University, Nathan Campus
Alan Wee-Chung Liew: Griffith University
Eduardo Roca: Griffith University, Nathan Campus
Tarlok Singh: Griffith University, Nathan Campus

Financial Innovation, 2023, vol. 9, issue 1, 1-33

Abstract: Abstract Purpose The Group Method of Data Handling (GMDH) neural network has demonstrated good performance in data mining, prediction, and optimization. Scholars have used it to forecast stock and real estate investment trust (REIT) returns in some countries and region, but not in the United States (US) REIT market. The primary goal of this study is to predict the US REIT market using GMDH and then compare its accuracy with that derived from the traditional prediction method. Design/methodology/approach To forecast the return on the US REIT index, this study used the GMDH neural network and the generalized autoregressive conditional heteroscedasticity (GARCH) model. In this test, the training samples, testing samples, and kernel functions of the GMDH model are controlled to investigate their impact on the accuracy of the machine learning approach. Corresponding experiments were performed using the GARCH model, and the accuracies of these two approaches were compared. Findings Compared with GARCH, GMDH’s accuracy is much higher, indicating that the machine learning approach can provide a highly accurate prediction of REIT prices. The size of the training samples and the kernel functions in the GMDH model affect the accuracy of the prediction results. In particular, the kernel function has a significant impact on prediction accuracy. The linear and linear covariance kernel functions are simple to train and yield accurate predictions, whereas the quadratic function is difficult to train. Even with small training samples, GMDH can outperform GARCH in prediction accuracy. Research limitations/implications Although GMDH shows good performance in predicting the US REIT return, it is still a black-box model, and the algorithm is difficult for financial analysts to develop and customize. The data used in this study come from the US REIT market, which is the world’s largest and most liquid market. Social implications This research shows that the GMDH model outperforms the GARCH model in forecasting REIT returns. Hence, investors can use the machine learning approach to make more accurate predictions of the target REITs’ returns and thus better investment decisions. Future investors and researchers may use GMDH to forecast the performance of REITs in other markets. Originality/value This is the first study to apply the GMDH neural network to the US REIT market and determine the impact of the two factors on its performance. For example, this research first discusses the impact of kernel functions on the US REIT market using the GMDH neural network. It also includes short-term daily prediction returns that were not previously considered, making it a valuable reference for financial industry analysts.

Keywords: REIT prediction; Machine learning; GMDH; GARCH; Accuracy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1186/s40854-023-00486-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00486-2

Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589

DOI: 10.1186/s40854-023-00486-2

Access Statistics for this article

Financial Innovation is currently edited by J. Leon Zhao and Zongyi

More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00486-2