An improved fuzzy time series forecasting model using variations of data
Tai Vovan ()
Additional contact information
Tai Vovan: Can Tho University
Fuzzy Optimization and Decision Making, 2019, vol. 18, issue 2, No 2, 173 pages
Abstract:
Abstract This study proposes an improved fuzzy time series (IFTS) forecasting model using variations of data that can interpolate historical data and forecast the future. The parameters in this model are chosen by algorithms to obtain the most suitable values for each data set. The calculation of the IFTS model can be performed conveniently and efficiently by a procedure within the R statistical software that has been stored in the AnalyseTS package. The proposed model is also used in the forecasting of two real problems in Vietnam: the penetration of salt and the total population. These numerical examples show the advantages of the proposed model in comparison with existing models and illustrate its effectiveness in practical applications.
Keywords: Fuzzy time series; Forecast; Error; Application; Criterion (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s10700-018-9290-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:fuzodm:v:18:y:2019:i:2:d:10.1007_s10700-018-9290-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10700
DOI: 10.1007/s10700-018-9290-7
Access Statistics for this article
Fuzzy Optimization and Decision Making is currently edited by Shu-Cherng Fang and Boading Liu
More articles in Fuzzy Optimization and Decision Making from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().