EconPapers    
Economics at your fingertips  
 

The Graph Model for Conflict Resolution: Reflections on Three Decades of Development

Keith W. Hipel (), Liping Fang () and D. Marc Kilgour ()
Additional contact information
Keith W. Hipel: University of Waterloo
Liping Fang: University of Waterloo
D. Marc Kilgour: University of Waterloo

Group Decision and Negotiation, 2020, vol. 29, issue 1, No 2, 60 pages

Abstract: Abstract The fundamental design and inherent capabilities of the Graph Model for Conflict Resolution (GMCR) to address a rich range of complex real world conflict situations are put into perspective by tracing its historical development over a period spanning more than 30 years, and highlighting great opportunities for meaningful future expansions within an era of artificial intelligence (AI) and intensifying conflict in an over-crowded world. By constructing a sound theoretical foundation for GMCR based upon assumptions reflecting what actually occurs in reality, a fascinating story is narrated on how GMCR was able to expand in bold new directions as well as take advantage of many important legacy decision technologies built within the earlier Metagame Analysis and later Conflict Analysis paradigms. From its predecessors, for instance, GMCR could benefit by the employment of option form put forward within Metagame Analysis for effectively recording a conflict, as well as preference elicitation techniques and solution concepts for defining chess-like behavior when calculating stability of states from the realm of Conflict Analysis. The key ideas outlined in the paper underlying the current and projected capabilities of GMCR include the development of four different ways to handle preference uncertainty in the presence of either transitive or intransitive preferences; a wide range of solution concepts for describing many kinds of human behavior under conflict; unique coalition analysis algorithms for determining if a given decision maker can fare better in a dispute via cooperation; tracing the evolution of a conflict over time; and the matrix formulation of GMCR for computational efficiency when calculating stability and also theoretically expanding GMCR in bold new directions. Inverse engineering is mentioned as an AI extension of GMCR for computationally determining the preferences required by decision makers in order to reach a desirable state, such as a climate change agreement in which all nations significantly cut back on their greenhouse gas emissions. The basic design of a decision support system for permitting researchers and practitioners to readily apply the foregoing and other advancements in GMCR to tough real world controversies is discussed. Although GMCR has been successfully applied to challenging disputes arising in many different fields, a simple climate change negotiation conflict between the US and China is utilized to explain clearly key concepts mentioned throughout the fascinating historical journey surrounding GMCR.

Keywords: Climate change; Conflict Analysis; Decision support system; Graph Model for Conflict Resolution; Metagame Analysis; Preference; Stability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://link.springer.com/10.1007/s10726-019-09648-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:grdene:v:29:y:2020:i:1:d:10.1007_s10726-019-09648-z

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10726/PS2

DOI: 10.1007/s10726-019-09648-z

Access Statistics for this article

Group Decision and Negotiation is currently edited by Gregory E. Kersten

More articles in Group Decision and Negotiation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:grdene:v:29:y:2020:i:1:d:10.1007_s10726-019-09648-z