EconPapers    
Economics at your fingertips  
 

Fast clustering algorithm of commodity association big data sparse network

Hailan Pan () and Xiaohuan Yang ()
Additional contact information
Hailan Pan: Shanghai University
Xiaohuan Yang: Cosco Shipping Technology CO

International Journal of System Assurance Engineering and Management, 2021, vol. 12, issue 4, No 5, 667-674

Abstract: Abstract How to dig out the business perspectives and market rules behind commodity transaction data, explore the relationship between commodities, so as to more scientifically and rationally classify and promote commodity categories and improve commodity sales performance for e-commerce companies has become a recent research hotspot. To this end, this paper proposes to use clustering algorithm to explore the hidden laws of commodity-related big data. This article first consults a large amount of information through the literature survey method, systematically summarizes the relevant theoretical knowledge of the association rule method and clustering algorithm and gives a detailed introduction to its application in the commodity association big data mining. The research in this area has laid a sufficient theoretical foundation; after that, the Apriori algorithm in the association rules and the K-means algorithm in the clustering algorithm were used to carry out the fast clustering algorithm experiment of the commodity-related big data sparse network and the commodity transaction data was introduced in detail. The process of association analysis and cluster analysis; then taking China’s well-known e-commerce platform Jingdong Mall as an example, by investigating the commodity transaction records of Jingdong Mall in the 4th week of July, the association and cluster analysis of its commodity transaction data were found. Among them, mobile phones and Bluetooth earphone, laptops and Bluetooth earphone, laptops and hard disks have the highest correlation and their confidence thresholds have reached 25%, 35 and 40% respectively. Finally, when the clustering results were tested, they were also found in the store. Strengthening the push and shopping guide of highly relevant product combinations on the website pages will increase the sales of products.

Keywords: Clustering algorithm; Association rules; Sparse network; Data mining; Electronic commerce (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01060-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:12:y:2021:i:4:d:10.1007_s13198-021-01060-8

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-021-01060-8

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:12:y:2021:i:4:d:10.1007_s13198-021-01060-8