Application of UAV tilt photogrammetry in 3D modeling of ancient buildings
Qiu Guo (),
Hechun Liu (),
Faez M. Hassan (),
Mohammed Wasim Bhatt () and
Ahmed Mateen Buttar ()
Additional contact information
Qiu Guo: Jinzhong Vocational and Technical College
Hechun Liu: 13th Construction Co., Ltd.
Faez M. Hassan: Mustansiriyah University
Mohammed Wasim Bhatt: Central University of Punjab
Ahmed Mateen Buttar: University of Agriculture Faisalabad
International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 1, No 43, 424-436
Abstract:
Abstract The initiation of photogrammetry that arrived in late 90’s permitted the 3D stereoscopic vision for the acquirement of information. A number of methodologies were embraced by several researchers to discover the innumerable aspects of photogrammetry, digital photography and image processing. Among these technologies UAV addressed tools were also employed in fast capturing of substantial areas in the efficient time slot this method was used by conventional aircrafts for efficient capturing. The expansion of unmanned aerial vehicles (UAV) in various fields has expanded comprehensively towards 3D modeling of ancient buildings. This expansion leads to the burden of obtaining highly precise information at multi-angle level and it becomes difficult for traditional technology to solve the 3D reconstruction problems of ancient buildings. To solve the problem of high precision 3D information acquisition and multi-angle real texture feature acquisition, this article proposes a new method of 3D reconstruction of ancient buildings combined with 3D laser scanning and tilt photogrammetry. The new method modifies the advantages of the two technologies and uses the feature point matching algorithm to realize the accurate fusion of multisource data, to gather the construction of a complete three-dimensional model inside and outside the ancient building. Considering the traditional ancestral hall of China as an example, the relative median error is computed for the constructed3D model, which is found to be minimized to 5 mm. The modeling efficiency is greatly improved by the proposed method when compared with the traditional method. The accuracy is relatively high and meets the requirements of modeling accuracy. Because the 3D model, elevation data of ancient buildings constructed in this study are derived from high precision point cloud data extraction. The accuracy of the model can also reach the millimeter level from the calculation results of error and relative middle error. Therefore, the 3D model constructed in this study has a high accuracy. It is revealed that this method provides significant technical support for the restoration and protection of ancient architectural cultural heritage.
Keywords: Unmanned aerial vehicles (UAV); 3D laser scanning; Data fusion; Ancient building reconstruction; 3D information acquisition; Tilt photogrammetry (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01458-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01458-4
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01458-4
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().