Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure
Akram Qashou (),
Sufian Yousef () and
Erika Sanchez-Velazquez ()
Additional contact information
Akram Qashou: Anglia Ruskin University
Sufian Yousef: Anglia Ruskin University
Erika Sanchez-Velazquez: Anglia Ruskin University
International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 5, No 19, 2390 pages
Abstract:
Abstract The generation of active power in renewable energy is dependent on several factors. These variables are related to the areas of weather, physical structure, control, and load behavior. Estimating the future value of the active power to be generated is difficult due to their unpredictable character. However, because of the higher precision required of the estimation, this problem becomes more complex if we examine a short-term temporal prediction. This study presents a method for converting stochastic behavior into a stable pattern, which can subsequently be used in a short-term estimator. For this conversion, K-means clustering is employed, followed by Long-Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms to perform the Short-term estimate. The environment, the operation, and the generated (normal or faulty) signal are all simulated using mathematical models. Weather parameters and load samples have been collected as part of a dataset. Monte-Carlo simulation using MATLAB programming has been realized to conduct an experiment. In addition, the LSTM and the GRU are compared to see how well they perform in this system. The proposed method's end findings outperform the current state-of-the-art.
Keywords: Renewable energy; Smart home; Short-term prediction; Stochastic behavior; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01649-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:5:d:10.1007_s13198-022-01649-7
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-022-01649-7
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().