Evaluating MTTF of 2-out-of-3 redundant systems with common cause failure and load share based on alpha factor and capacity flow models
Seyed Mohammad Mortazavi (),
Mahdi Karbasian and
Sareh Goli
Additional contact information
Seyed Mohammad Mortazavi: Islamic Azad University
Mahdi Karbasian: Malek Ashtar University of Technology
Sareh Goli: Isfahan University of Technology
International Journal of System Assurance Engineering and Management, 2017, vol. 8, issue 3, No 3, 542-552
Abstract:
Abstract K-out-of-n redundant systems are used to increase reliability in various industries. The failure of a component in such systems is dependent upon the failure of other components. Therefore, if an appropriate model is not developed to take dependent failures into consideration, reliability and MTTF of redundant systems are evaluated wrongly. One of the most crucial varieties of dependent failures is common cause failure. Common cause failure refers to the failure of two or more components of a k-out-of-n system which occurs simultaneously or within a short time interval and thus components are direct failures resulting from a shared cause. Another type of dependent failure in k-out-of-n redundant systems is load share, where the failure of one component leads to increased load in surviving components, hence changing their failure rate. In this paper, using Markov chain, three models are used to evaluate the MTTF of a 2-out-of-3 redundant system by taking dependent failures into account. Model I addresses the MTTF of a 2-out-of-3 redundant system by considering common cause failure based on alpha factor model. In Model II, both dependent failures (common cause failure and load share) are examined based on capacity flow and alpha factor model. In Model III, in addition to common cause failure and load share, component repair is studied, too. In order to examine the validity of the models introduced and conduct sensitivity analysis, some diagrams are drawn for each model. Considering the dependent failures in the 2-out-of-3 redundant systems, all the three proposed models can be practical and be used to evaluate MTTF.
Keywords: MTTF; Common cause failure; Load share; Alpha factor; Capacity flow (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-016-0553-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:8:y:2017:i:3:d:10.1007_s13198-016-0553-9
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-016-0553-9
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().