Questioning Racial and Gender Bias in AI-based Recommendations: Do Espoused National Cultural Values Matter?
Manjul Gupta,
Carlos M. Parra and
Denis Dennehy ()
Additional contact information
Manjul Gupta: Florida International University
Carlos M. Parra: Florida International University
Denis Dennehy: NUI Galway
Information Systems Frontiers, 2022, vol. 24, issue 5, No 6, 1465-1481
Abstract:
Abstract One realm of AI, recommender systems have attracted significant research attention due to concerns about its devastating effects to society’s most vulnerable and marginalised communities. Both media press and academic literature provide compelling evidence that AI-based recommendations help to perpetuate and exacerbate racial and gender biases. Yet, there is limited knowledge about the extent to which individuals might question AI-based recommendations when perceived as biased. To address this gap in knowledge, we investigate the effects of espoused national cultural values on AI questionability, by examining how individuals might question AI-based recommendations due to perceived racial or gender bias. Data collected from 387 survey respondents in the United States indicate that individuals with espoused national cultural values associated to collectivism, masculinity and uncertainty avoidance are more likely to question biased AI-based recommendations. This study advances understanding of how cultural values affect AI questionability due to perceived bias and it contributes to current academic discourse about the need to hold AI accountable.
Keywords: Artificial intelligence; Recommender systems; Culture; Racial bias; Gender bias; Responsible AI; Algorithmic bias; Ethical AI (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10796-021-10156-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:infosf:v:24:y:2022:i:5:d:10.1007_s10796-021-10156-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10796
DOI: 10.1007/s10796-021-10156-2
Access Statistics for this article
Information Systems Frontiers is currently edited by Ram Ramesh and Raghav Rao
More articles in Information Systems Frontiers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().