Categorising Count Data into Ordinal Responses with Application to Ecological Communities
D. Fernández () and
S. Pledger ()
Additional contact information
D. Fernández: Victoria University of Wellington
S. Pledger: Victoria University of Wellington
Journal of Agricultural, Biological and Environmental Statistics, 2016, vol. 21, issue 2, No 8, 348-362
Abstract:
Abstract Count data sets may involve overdispersion from a set of species and underdispersion from another set which would require fitting different models (e.g. a negative binomial model for the overdispersed set and a binomial model for the underdispersed one). Additionally, many count data sets have very high counts and very low counts. Categorising these counts into ordinal categories makes the actual counts less influential in the model fitting, giving broad categories which enable us to detect major broadly based patterns of turnover or nestedness shown by groups of species. In this paper, a strategy of categorising count data into ordinal data was carried out and also we implemented measures to compare different cluster structures. The application of this categorising strategy and a comparison of clustering results between count and categorised ordinal data in two ecological community data sets are shown. A major advantage of using our ordinal approach is that it allows for the inclusion of all different levels of dispersion in the data in one methodology, without treating the data differently. This reduction of the parameters on modelling different levels of dispersion does not substantially change the results in clustering structure. In the two data sets used in this paper, we observed ordinal clustering structure up to 93.1 % similar to those from the count data approaches. This has the important implication of supporting simpler, faster data collection using ordinal scales only. Supplementary materials accompanying this paper appear on-line.
Keywords: Cluster analysis; Clustering measures; EM algorithm; Finite mixture model; Ordinal data; Stereotype model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s13253-015-0240-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:21:y:2016:i:2:d:10.1007_s13253-015-0240-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-015-0240-3
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().