Testing Self-Similarity Through Lamperti Transformations
Myoungji Lee (),
Marc G. Genton () and
Mikyoung Jun ()
Additional contact information
Myoungji Lee: Texas A&M University
Marc G. Genton: King Abdullah University of Science and Technology
Mikyoung Jun: Texas A&M University
Journal of Agricultural, Biological and Environmental Statistics, 2016, vol. 21, issue 3, No 3, 426-447
Abstract:
Abstract Self-similar processes have been widely used in modeling real-world phenomena occurring in environmetrics, network traffic, image processing, and stock pricing, to name but a few. The estimation of the degree of self-similarity has been studied extensively, while statistical tests for self-similarity are scarce and limited to processes indexed in one dimension. This paper proposes a statistical hypothesis test procedure for self-similarity of a stochastic process indexed in one dimension and multi-self-similarity for a random field indexed in higher dimensions. If self-similarity is not rejected, our test provides a set of estimated self-similarity indexes. The key is to test stationarity of the inverse Lamperti transformations of the process. The inverse Lamperti transformation of a self-similar process is a strongly stationary process, revealing a theoretical connection between the two processes. To demonstrate the capability of our test, we test self-similarity of fractional Brownian motions and sheets, their time deformations and mixtures with Gaussian white noise, and the generalized Cauchy family. We also apply the self-similarity test to real data: annual minimum water levels of the Nile River, network traffic records, and surface heights of food wrappings.
Keywords: Fractional Brownian sheet; Hurst coefficient; Hypothesis test; Multi-self-similarity; Random fields; Stationarity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s13253-016-0258-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:21:y:2016:i:3:d:10.1007_s13253-016-0258-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-016-0258-1
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().