EconPapers    
Economics at your fingertips  
 

Local Influence for Spatially Correlated Binomial Data: An Application to the Spodoptera frugiperda Infestation in Corn

D. T. Nava (), F. De Bastiani (), M. A. Uribe-Opazo (), O. Nicolis () and M. Galea ()
Additional contact information
D. T. Nava: Universidade Tecnológica Federal do Paraná
F. De Bastiani: Universidade Federal de Pernambuco
M. A. Uribe-Opazo: Universidade Estadual do Oeste do Paraná
O. Nicolis: Universidad de Valparaíso
M. Galea: Pontificia Universidad Católica de Chile

Journal of Agricultural, Biological and Environmental Statistics, 2017, vol. 22, issue 4, No 7, 540-561

Abstract: Abstract Influence diagnostics are valuable tools for understanding the influence of data and/or model assumptions on the results of a statistical analysis. This paper proposes local influence for the analysis of spatially correlated binomial data. We consider a spatial model with a binomial marginal distribution and logit link function. Generalized estimating equations via Fisher’s scoring are used for estimating the parameters. We present an application to the spatial Spodoptera frugiperda infestation where the generalized estimating equations are used to identify potential influential observations by the local influence analysis. The spatial prediction with and without the influential points is compared. The results show that the presence of the influential observation in the data changes statistical inference, the predicted values and the respective maps. A simulation study considering different scenarios shows the performance of the local influence diagnostic method.

Keywords: Binomial distribution; Exponential family; Fisher’s score; Outliers; Quasi-likelihood (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13253-017-0306-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0306-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253

DOI: 10.1007/s13253-017-0306-5

Access Statistics for this article

Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland

More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0306-5