A Multivariate Global Spatiotemporal Stochastic Generator for Climate Ensembles
Matthew Edwards (),
Stefano Castruccio () and
Dorit Hammerling ()
Additional contact information
Matthew Edwards: Newcastle University
Stefano Castruccio: University of Notre Dame
Dorit Hammerling: National Center for Atmospheric Research
Journal of Agricultural, Biological and Environmental Statistics, 2019, vol. 24, issue 3, No 5, 464-483
Abstract:
Abstract In order to understand and quantify the uncertainties in projections and physics of a climate model, a collection of climate simulations (an ensemble) is typically used. Given the high-dimensionality of the input space of a climate model, as well as the complex, nonlinear relationships between the climate variables, a large ensemble is often required to accurately assess these uncertainties. If only a small number of climate variables are of interest at a specified spatial and temporal scale, the computational and storage expenses can be substantially reduced by training a statistical model on a small ensemble. The statistical model then acts as a stochastic generator (SG) able to simulate a large ensemble, given a small training ensemble. Previous work on SGs has focused on modeling and simulating individual climate variables (e.g., surface temperature, wind speed) independently. Here, we introduce a SG that jointly simulates three key climate variables. The model is based on a multistage spectral approach that allows for inference of more than 80 million data points for a nonstationary global model, by conducting inference in stages and leveraging large-scale parallelization across many processors. We demonstrate the feasibility of jointly simulating climate variables by training the SG on five ensemble members from a large ensemble project and assess the SG simulations by comparing them to the ensemble members not used in training. Supplementary materials accompanying this paper appear online.
Keywords: Nonstationary; Massive data; Stepwise estimation; Parallel computation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s13253-019-00352-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jagbes:v:24:y:2019:i:3:d:10.1007_s13253-019-00352-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/13253
DOI: 10.1007/s13253-019-00352-8
Access Statistics for this article
Journal of Agricultural, Biological and Environmental Statistics is currently edited by Stephen Buckland
More articles in Journal of Agricultural, Biological and Environmental Statistics from Springer, The International Biometric Society, American Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().