Equal chances, unequal outcomes? Network-based evolutionary learning and the industrial dynamics of superstar firms
Jan Schulz and
Daniel M. Mayerhoffer ()
Additional contact information
Daniel M. Mayerhoffer: University of Bamberg
Journal of Business Economics, 2021, vol. 91, issue 9, No 5, 1357-1385
Abstract:
Abstract With the advent of platform economies and the increasing availability of online price comparisons, many empirical markets now select on relative rather than absolute performance. This feature might give rise to the ‘winner takes all/most’ phenomenon, where tiny initial productivity differences amount to large differences in market shares. We study the effect of heterogeneous initial productivities arising from locally segregated markets on aggregate outcomes, e.g., regarding revenue distributions. Several of those firm-level characteristics follow distributional regularities or ‘scaling laws’ (Brock in Ind Corp Change 8(3):409–446, 1999). Among the most prominent are Zipf’s law describing the largest firms‘ extremely concentrated size distribution and the robustly fat-tailed nature of firm size growth rates, indicating a high frequency of extreme growth events. Dosi et al. (Ind Corp Change 26(2):187–210, 2017b) recently proposed a model of evolutionary learning that can simultaneously explain many of these regularities. We propose a parsimonious extension to their model to examine the effect for deviations in market structure from global competition, implicitly assumed in Dosi et al. (2017b). This extension makes it possible to disentangle the effects of two modes of competition: the global competition for sales and the localised competition for market power, giving rise to industry-specific entry productivity. We find that the empirically well-established combination of ‘superstar firms’ and Zipf tail is consistent only with a knife-edge scenario in the neighbourhood of most intensive local competition. Our model also contests the conventional wisdom derived from a general equilibrium setting that maximum competition leads to minimum concentration of revenue (Silvestre in J Econ Lit 31(1):105–141, 1993). We find that most intensive local competition leads to the highest concentration, whilst the lowest concentration appears for a mild degree of (local) oligopoly. Paradoxically, a level playing field in initial conditions might induce extreme concentration in market outcomes.
Keywords: Agent-based modelling; Replicator dynamics; Pareto distribution; Fat tails; Evolutionary learning; Competition (search for similar items in EconPapers)
JEL-codes: C63 D21 D43 L11 L13 L14 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11573-021-01047-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jbecon:v:91:y:2021:i:9:d:10.1007_s11573-021-01047-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11573
DOI: 10.1007/s11573-021-01047-8
Access Statistics for this article
Journal of Business Economics is currently edited by Günter Fandel
More articles in Journal of Business Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().