Recognizing Treelike k-Dissimilarities
Sven Herrmann (),
Katharina Huber,
Vincent Moulton and
Andreas Spillner
Journal of Classification, 2012, vol. 29, issue 3, 340 pages
Abstract:
A k-dissimilarity D on a finite set X, |X| ≥ k, is a map from the set of size k subsets of X to the real numbers. Such maps naturally arise from edgeweighted trees T with leaf-set X: Given a subset Y of X of size k, D(Y ) is defined to be the total length of the smallest subtree of T with leaf-set Y . In case k = 2, it is well-known that 2-dissimilarities arising in this way can be characterized by the so-called “4-point condition”. However, in case k > 2 Pachter and Speyer ( 2004 ) recently posed the following question: Given an arbitrary k-dissimilarity, how do we test whether this map comes from a tree? In this paper, we provide an answer to this question, showing that for k ≥ 3 a k-dissimilarity on a set X arises from a tree if and only if its restriction to every 2 k-element subset of X arises from some tree, and that 2 k is the least possible subset size to ensure that this is the case. As a corollary, we show that there exists a polynomial-time algorithm to determine when a k-dissimilarity arises from a tree. We also give a 6-point condition for determining when a 3-dissimilarity arises from a tree, that is similar to the aforementioned 4-point condition. Copyright Springer Science+Business Media, LLC 2012
Keywords: k-dissimilarity; Phylogenetic tree; Dissimilarity; Metric; 4-point condition; Ultrametric condition; Equidistant tree (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-012-9115-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:29:y:2012:i:3:p:321-340
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-012-9115-2
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().