EconPapers    
Economics at your fingertips  
 

Constrained Multilevel Latent Class Models for the Analysis of Three-Way Three-Mode Binary Data

Michel Meulders (), Francis Tuerlinckx and Wolf Vanpaemel

Journal of Classification, 2013, vol. 30, issue 3, 306-337

Abstract: Probabilistic feature models (PFMs) can be used to explain binary rater judgements about the associations between two types of elements (e.g., objects and attributes) on the basis of binary latent features. In particular, to explain observed object-attribute associations PFMs assume that respondents classify both objects and attributes with respect to a, usually small, number of binary latent features, and that the observed object-attribute association is derived as a specific mapping of these classifications. Standard PFMs assume that the object-attribute association probability is the same according to all respondents, and that all observations are statistically independent. As both assumptions may be unrealistic, a multilevel latent class extension of PFMs is proposed which allows objects and/or attribute parameters to be different across latent rater classes, and which allows to model dependencies between associations with a common object (attribute) by assuming that the link between features and objects (attributes) is fixed across judgements. Formal relationships with existing multilevel latent class models for binary three-way data are described. As an illustration, the models are used to study rater differences in product perception and to investigate individual differences in the situational determinants of anger-related behavior. Copyright Springer Science+Business Media New York 2013

Keywords: Multilevel latent class model; Latent feature; Three-way data (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-013-9141-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:30:y:2013:i:3:p:306-337

Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2

DOI: 10.1007/s00357-013-9141-8

Access Statistics for this article

Journal of Classification is currently edited by Douglas Steinley

More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jclass:v:30:y:2013:i:3:p:306-337