Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation
Faicel Chamroukhi ()
Additional contact information
Faicel Chamroukhi: Université de Toulon, CNRS, LSIS, UMR 7296
Journal of Classification, 2016, vol. 33, issue 3, No 3, 374-411
Abstract:
Abstract This paper introduces a novel mixture model-based approach to the simultaneous clustering and optimal segmentation of functional data, which are curves presenting regime changes. The proposed model consists of a finite mixture of piecewise polynomial regression models. Each piecewise polynomial regression model is associated with a cluster, and within each cluster, each piecewise polynomial component is associated with a regime (i.e., a segment). We derive two approaches to learning the model parameters: the first is an estimation approach which maximizes the observed-data likelihood via a dedicated expectation-maximization (EM) algorithm, then yielding a fuzzy partition of the curves into K clusters obtained at convergence by maximizing the posterior cluster probabilities. The second is a classification approach and optimizes a specific classification likelihood criterion through a dedicated classification expectation-maximization (CEM) algorithm. The optimal curve segmentation is performed by using dynamic programming. In the classification approach, both the curve clustering and the optimal segmentation are performed simultaneously as the CEM learning proceeds. We show that the classification approach is a probabilistic version generalizing the deterministic K-means-like algorithm proposed in Hébrail, Hugueney, Lechevallier, and Rossi (2010). The proposed approach is evaluated using simulated curves and real-world curves. Comparisons with alternatives including regression mixture models and the K-means-like algorithm for piecewise regression demonstrate the effectiveness of the proposed approach.
Keywords: Model-based clustering; Functional data analysis; Optimal curve segmentation; Mixture models; Piecewise regression; EM algortihm; CEM algorithm. (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00357-016-9212-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:33:y:2016:i:3:d:10.1007_s00357-016-9212-8
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-016-9212-8
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().