The maximum flow problem with disjunctive constraints
Ulrich Pferschy () and
Joachim Schauer ()
Additional contact information
Ulrich Pferschy: University of Graz
Joachim Schauer: University of Graz
Journal of Combinatorial Optimization, 2013, vol. 26, issue 1, No 8, 109-119
Abstract:
Abstract We study the maximum flow problem subject to binary disjunctive constraints in a directed graph: A negative disjunctive constraint states that a certain pair of arcs in a digraph cannot be simultaneously used for sending flow in a feasible solution. In contrast to this, positive disjunctive constraints force that for certain pairs of arcs at least one arc has to carry flow in a feasible solution. It is convenient to represent the negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the arcs of the underlying graph, and whose edges encode the constraints. Analogously we represent the positive disjunctive constraints by a so-called forcing graph. For conflict graphs we prove that the maximum flow problem is strongly $\mathcal{NP}$ -hard, even if the conflict graph consists only of unconnected edges. This result still holds if the network consists only of disjoint paths of length three. For forcing graphs we also provide a sharp line between polynomially solvable and strongly $\mathcal{NP}$ -hard instances for the case where the flow values are required to be integral. Moreover, our hardness results imply that no polynomial time approximation algorithm can exist for both problems. In contrast to this we show that the maximum flow problem with a forcing graph can be solved efficiently if fractional flow values are allowed.
Keywords: Maximum flow problem; Conflict graph; Binary constraints (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-011-9438-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:26:y:2013:i:1:d:10.1007_s10878-011-9438-7
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-011-9438-7
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().