A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance
Baruch Mor and
Gur Mosheiov ()
Additional contact information
Baruch Mor: Ariel University
Gur Mosheiov: The Hebrew University
Journal of Combinatorial Optimization, 2017, vol. 33, issue 4, No 18, 1454-1468
Abstract:
Abstract We study a single-machine scheduling model combining two competing agents and due-date assignment. The basic setting involves two agents who need to process their own sets of jobs, and compete on the use of a common processor. Our goal is to find the joint schedule that minimizes the value of the objective function of one agent, subject to an upper bound on the value of the objective function of the second agent. The scheduling measure considered in this paper is minimum total (earliness, tardiness and due-date) cost, based on common flow allowance, i.e., due-dates are defined as linear functions of the job processing times. We introduce a simple polynomial time solution for this problem (linear in the number of jobs), as well as to its extension to a multi-agent setting. We further extend the model to that of a due-window assignment based on common flow allowance.
Keywords: Scheduling; Single machine; Two agents; Common flow-allowance; Minmax (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-016-0049-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:33:y:2017:i:4:d:10.1007_s10878-016-0049-1
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-016-0049-1
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().