A note on a two-agent scheduling problem related to the total weighted late work
Yuan Zhang and
Jinjiang Yuan ()
Additional contact information
Yuan Zhang: Zhengzhou University
Jinjiang Yuan: Zhengzhou University
Journal of Combinatorial Optimization, 2019, vol. 37, issue 3, No 12, 989-999
Abstract:
Abstract We revisit a two-agent scheduling problem in which a set of jobs belonging to two agents A and B (without common jobs) will be processed on a single machine for minimizing the total weighted late work of agent A subject to the maximum cost of agent B being bounded. Zhang and Wang (J Comb Optim 33:945–955, 2017) studied three versions of the problem: (i) the A-jobs having a common due date, (ii) the A-jobs having a common processing time, (iii) the general version. The authors presented polynomial-time algorithms for the first two versions and a pseudo-polynomial-time algorithm for the last one. However, their algorithm for the first version is invalid. Then we show the NP-hardness and provide a pseudo-polynomial-time algorithm for the first version with the cost of agent B being makespan, present a polynomial-time algorithm for an extension of the second version, and show that the third version is solvable in pseudo-polynomial-time by a new technique.
Keywords: Scheduling; Single machine; Two-agent; Late work (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-018-0337-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:37:y:2019:i:3:d:10.1007_s10878-018-0337-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-018-0337-z
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().