Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks
J. Rajalakshmi () and
S. Durairaj ()
Additional contact information
J. Rajalakshmi: Fatima Michael College of Engineering and Technology
S. Durairaj: Dhanalakshmi Srinivasan Engineering College
Journal of Combinatorial Optimization, 2021, vol. 41, issue 2, No 1, 267-289
Abstract:
Abstract Multi-objective optimization for siting and sizing of Distributed Generations (DGs) is difficult because of the highly non-linear interactions of a large number of variables. Furthermore, effective optimization algorithms are often highly problem-dependent and need broad tuning, which limits their applicability to the real world. To address this issue, in this study, Multi-Objective Differential Evolution (MODE) algorithms have been proposed for siting and sizing of DGs. The site and size of DGs play a vital role in the minimization of real power losses and enhancement of voltage profile in distribution systems. This study intends to attain the technical, economic, and environmental benefits of DGs. Hence, the Objective Functions such as minimization of power losses, voltage deviation, energy cost, emissions while generating power, and enhancement of the Voltage Stability Index have been considered. The simulations of two different multi-objective operational cases have been carried out on IEEE 33 bus system, IEEE 69 bus system, and Tamil Nadu Generation and Distribution Corporation Limited, as a real part of 62 bus Indian Utility System. The simulation results of MODE have shown its superior performance and have ensured the economic and environmental benefits of integrating DGs.
Keywords: Optimization; DGs; Energy cost; Emission; Power loss (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00681-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:41:y:2021:i:2:d:10.1007_s10878-020-00681-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-020-00681-2
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().