EconPapers    
Economics at your fingertips  
 

Population monotonicity in matching games

Han Xiao () and Qizhi Fang ()
Additional contact information
Han Xiao: Ocean University of China
Qizhi Fang: Ocean University of China

Journal of Combinatorial Optimization, 2022, vol. 43, issue 4, No 1, 699-709

Abstract: Abstract The matching game is a cooperative profit game defined on an edge-weighted graph, where the players are the vertices and the profit of a coalition is the maximum weight of matchings in the subgraph induced by the coalition. A population monotonic allocation scheme is a collection of rules defining how to share the profit among players in each coalition such that every player is better off when the coalition expands. In this paper, we study matching games and provide a necessary and sufficient characterization for the existence of population monotonic allocation schemes. Our characterization implies that whether a matching game admits population monotonic allocation schemes can be determined efficiently.

Keywords: Cooperative game theory; Matching game; Population monotonic allocation scheme; 05C57; 91A12; 91A43; 91A46 (search for similar items in EconPapers)
JEL-codes: C71 C78 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10878-021-00804-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:43:y:2022:i:4:d:10.1007_s10878-021-00804-3

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-021-00804-3

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:jcomop:v:43:y:2022:i:4:d:10.1007_s10878-021-00804-3