An efficient spread-based evolutionary algorithm for solving dynamic multi-objective optimization problems
Alireza Falahiazar,
Arash Sharifi () and
Vahid Seydi
Additional contact information
Alireza Falahiazar: Islamic Azad University
Arash Sharifi: Islamic Azad University
Vahid Seydi: Islamic Azad University
Journal of Combinatorial Optimization, 2022, vol. 44, issue 1, No 37, 794-849
Abstract:
Abstract Dynamic multi-objective optimization algorithms are used as powerful methods for solving many problems worldwide. Diversity, convergence, and adaptation to environment changes are three of the most important factors that dynamic multi-objective optimization algorithms try to improve. These factors are functions of exploration, exploitation, selection and adaptation operators. Thus, effective operators should be employed to achieve a robust dynamic optimization algorithm. The algorithm presented in this study is known as spread-based dynamic multi-objective algorithm (SBDMOA) that uses bi-directional mutation and convex crossover operators to exploit and explore the search space. The selection operator of the proposed algorithm is inspired by the spread metric to maximize diversity. When the environment changed, the proposed algorithm removes the dominated solutions and mutated all the non-dominated solutions for adaptation to the new environment. Then the selection operator is used to select desirable solutions from the population of non-dominated and mutated solutions. Generational distance, spread, and hypervolume metrics are employed to evaluate the convergence and diversity of solutions. The overall performance of the proposed algorithm is evaluated and investigated on FDA, DMOP, JY, and the heating optimization problem, by comparing it with the DNSGAII, MOEA/D-SV, DBOEA, KPEA, D-MOPSO, KT-DMOEA, Tr-DMOEA and PBDMO algorithms. Empirical results demonstrate the superiority of the proposed algorithm in comparison to other state-of-the-art algorithms.
Keywords: Dynamic multi-objective optimization problems; Evolutionary algorithm; Heating optimization; Optimization algorithm; Spread-based (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-022-00860-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-022-00860-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-022-00860-3
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().