EconPapers    
Economics at your fingertips  
 

Multitasking scheduling with alternate periods

Yujia Huo, Cuixia Miao (), Fanyu Kong and Yuzhong Zhang
Additional contact information
Yujia Huo: Qufu Normal University
Cuixia Miao: Qufu Normal University
Fanyu Kong: Qufu Normal University
Yuzhong Zhang: Qufu Normal University

Journal of Combinatorial Optimization, 2023, vol. 45, issue 3, No 10, 13 pages

Abstract: Abstract In this paper, we consider the multitasking scheduling with alternate odd-period and even-period. For the minimization of makespan on one single machine, we present a 2-approximation algorithm for the general case and a $$\frac{4}{3}$$ 4 3 -approximation algorithm for a special case when jobs have identical release dates. And we prove that the problem is strongly NP-hard when jobs have different release dates. For the minimization of makespan on identical parallel machines, we present a $$(\frac{5}{2}-\frac{1}{m})$$ ( 5 2 - 1 m ) -approximation algorithm for the general case and a pseudo-polynomial time algorithm when the number of machines is constant. Furthermore, we prove that the single-machine scheduling of minimizing the lateness is strongly NP-hard.

Keywords: Multitasking scheduling; Approximation algorithm; Pseudo-polynomial-time algorithm; Strongly NP-hard (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-023-01020-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:45:y:2023:i:3:d:10.1007_s10878-023-01020-x

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-023-01020-x

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:45:y:2023:i:3:d:10.1007_s10878-023-01020-x