Sentiment and position-taking analysis of parliamentary debates: a systematic literature review
Gavin Abercrombie () and
Riza Batista-Navarro
Additional contact information
Gavin Abercrombie: University of Manchester
Riza Batista-Navarro: University of Manchester
Journal of Computational Social Science, 2020, vol. 3, issue 1, No 12, 245-270
Abstract:
Abstract Parliamentary and legislative debate transcripts provide access to information concerning the opinions, positions, and policy preferences of elected politicians. They attract attention from researchers from a wide variety of backgrounds, from political and social sciences to computer science. As a result, the problem of computational sentiment and position-taking analysis has been tackled from different perspectives, using varying approaches and methods, and with relatively little collaboration or cross-pollination of ideas. The existing research is scattered across publications from various fields and venues. In this article, we present the results of a systematic literature review of 61 studies, all of which address the automatic analysis of the sentiment and opinions expressed, and the positions taken by speakers in parliamentary (and other legislative) debates. In this review, we discuss the existing research with regard to the aims and objectives of the researchers who work in this area, the automatic analysis tasks which they undertake, and the approaches and methods which they use. We conclude by summarizing their findings, discussing the challenges of applying computational analysis to parliamentary debates, and suggesting possible avenues for further research.
Keywords: Sentiment analysis; Opinion mining; Text as data; Parliamentary debates; Legislative debates (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s42001-019-00060-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:3:y:2020:i:1:d:10.1007_s42001-019-00060-w
Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001
DOI: 10.1007/s42001-019-00060-w
Access Statistics for this article
Journal of Computational Social Science is currently edited by Takashi Kamihigashi
More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().