EconPapers    
Economics at your fingertips  
 

A scoping review on the use of natural language processing in research on political polarization: trends and research prospects

Renáta Németh ()
Additional contact information
Renáta Németh: ELTE Eötvös Loránd University

Journal of Computational Social Science, 2023, vol. 6, issue 1, No 8, 289-313

Abstract: Abstract As part of the “text-as-data” movement, Natural Language Processing (NLP) provides a computational way to examine political polarization. We conducted a methodological scoping review of studies published since 2010 (n = 154) to clarify how NLP research has conceptualized and measured political polarization, and to characterize the degree of integration of the two different research paradigms that meet in this research area. We identified biases toward US context (59%), Twitter data (43%) and machine learning approach (33%). Research covers different layers of the political public sphere (politicians, experts, media, or the lay public), however, very few studies involved more than one layer. Results indicate that only a few studies made use of domain knowledge and a high proportion of the studies were not interdisciplinary. Those studies that made efforts to interpret the results demonstrated that the characteristics of political texts depend not only on the political position of their authors, but also on other often-overlooked factors. Ignoring these factors may lead to overly optimistic performance measures. Also, spurious results may be obtained when causal relations are inferred from textual data. Our paper provides arguments for the integration of explanatory and predictive modeling paradigms, and for a more interdisciplinary approach to polarization research.

Keywords: Language polarization; Political polarization; Partisan language; Natural language processing; Text mining; Computational text analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42001-022-00196-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:6:y:2023:i:1:d:10.1007_s42001-022-00196-2

Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001

DOI: 10.1007/s42001-022-00196-2

Access Statistics for this article

Journal of Computational Social Science is currently edited by Takashi Kamihigashi

More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcsosc:v:6:y:2023:i:1:d:10.1007_s42001-022-00196-2