EconPapers    
Economics at your fingertips  
 

Decomposition strategy for the stochastic pooling problem

Xiang Li, Asgeir Tomasgard and Paul Barton ()

Journal of Global Optimization, 2012, vol. 54, issue 4, 765-790

Abstract: The stochastic pooling problem is a type of stochastic mixed-integer bilinear program arising in the integrated design and operation of various important industrial networks, such as gasoline blending, natural gas production and transportation, water treatment, etc. This paper presents a rigorous decomposition method for the stochastic pooling problem, which guarantees finding an $${\epsilon}$$ -optimal solution with a finite number of iterations. By convexification of the bilinear terms, the stochastic pooling problem is relaxed into a lower bounding problem that is a potentially large-scale mixed-integer linear program (MILP). Solution of this lower bounding problem is then decomposed into a sequence of relaxed master problems, which are MILPs with much smaller sizes, and primal bounding problems, which are linear programs. The solutions of the relaxed master problems yield a sequence of nondecreasing lower bounds on the optimal objective value, and they also generate a sequence of integer realizations defining the primal problems which yield a sequence of nonincreasing upper bounds on the optimal objective value. The decomposition algorithm terminates finitely when the lower and upper bounds coincide (or are close enough), or infeasibility of the problem is indicated. Case studies involving two example problems and two industrial problems demonstrate the dramatic computational advantage of the proposed decomposition method over both a state-of-the-art branch-and-reduce global optimization method and explicit enumeration of integer realizations, particularly for large-scale problems. Copyright Springer Science+Business Media, LLC. 2012

Keywords: Nonconvex mixed-integer nonlinear programming; Stochastic programming; Stochastic pooling problem; Decomposition; Large-scale; 90C26; 90C15 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-011-9792-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:54:y:2012:i:4:p:765-790

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-011-9792-0

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:54:y:2012:i:4:p:765-790