Convergence analysis of power penalty method for American bond option pricing
K. Zhang () and
K. Teo
Journal of Global Optimization, 2013, vol. 56, issue 4, 1313-1323
Abstract:
This paper is concerned with the convergence analysis of power penalty method to pricing American options on discount bond, where the single factor Cox–Ingrosll–Ross model is adopted for the short interest rate. The valuation of American bond option is usually formulated as a partial differential complementarity problem. We first develop a power penalty method to solve this partial differential complementarity problem, which produces a nonlinear degenerated parabolic PDE. Within the framework of variational inequalities, the solvability and convergence properties of this penalty approach are explored in a proper infinite dimensional space. Moreover, a sharp rate of convergence of the power penalty method is obtained. Finally, we show that the power penalty approach is monotonically convergent with the penalty parameter. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Complementarity problem; Variational inequalities; Option pricing; Penalty method (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9843-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:4:p:1313-1323
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9843-1
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().