Carbon tax based on the emission factor: a bilevel programming approach
Hossa Almutairi () and
Samir Elhedhli ()
Journal of Global Optimization, 2014, vol. 58, issue 4, 795-815
Abstract:
We present a bilevel programming approach to design an effective carbon tax scheme based on the production emission factor, used as an intensity measure, for a competitive market with multiple players. At the upper level, the government sets a target emission factor for the industry and taxes firms if they exceed that target. At the lower level, the industry sets output levels that maximize social welfare. The bilevel model is transformed to a linear MIP by replacing the lower level optimization problem by its KKT conditions, and linearizing the complementarity slackness conditions. We test the model in the context of the cement industry. The results show that the proposed model finds the optimal tax rate that induces firms to switch to less carbon-intensive fuels and reduces the overall emissions. Copyright Springer Science+Business Media New York 2014
Keywords: Bilevel programming; Emission factor; Carbon tax; Social welfare; Environment (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0068-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:58:y:2014:i:4:p:795-815
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-013-0068-8
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().