EconPapers    
Economics at your fingertips  
 

Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems

Juliane Müller () and Christine Shoemaker

Journal of Global Optimization, 2014, vol. 60, issue 2, 123-144

Abstract: This paper examines the influence of two major aspects on the solution quality of surrogate model algorithms for computationally expensive black-box global optimization problems, namely the surrogate model choice and the method of iteratively selecting sample points. A random sampling strategy (algorithm SO-M-c) and a strategy where the minimum point of the response surface is used as new sample point (algorithm SO-M-s) are compared in numerical experiments. Various surrogate models and their combinations have been used within the SO-M-c and SO-M-s sampling frameworks. The Dempster–Shafer Theory approach used in the algorithm by Müller and Piché (J Glob Optim 51:79–104, 2011 ) has been used for combining the surrogate models. The algorithms are numerically compared on 13 deterministic literature test problems with 2–30 dimensions, an application problem that deals with groundwater bioremediation, and an application that arises in energy generation using tethered kites. NOMAD and the particle swarm pattern search algorithm (PSWARM), which are derivative-free optimization methods, have been included in the comparison. The algorithms have also been compared to a kriging method that uses the expected improvement as sampling strategy (FEI), which is similar to the Efficient Global Optimization (EGO) algorithm. Data and performance profiles show that surrogate model combinations containing the cubic radial basis function (RBF) model work best regardless of the sampling strategy, whereas using only a polynomial regression model should be avoided. Kriging and combinations including kriging perform in general worse than when RBF models are used. NOMAD, PSWARM, and FEI perform for most problems worse than SO-M-s and SO-M-c. Within the scope of this study a Matlab toolbox has been developed that allows the user to choose, among others, between various sampling strategies and surrogate models and their combinations. The open source toolbox is available from the authors upon request. Copyright Springer Science+Business Media New York 2014

Keywords: Surrogate model; Response surface; Model combination; Radial basis function; Kriging; Global optimization; Computationally expensive; Derivative-free; Matlab toolbox (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-014-0184-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:60:y:2014:i:2:p:123-144

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-014-0184-0

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:60:y:2014:i:2:p:123-144