Modeling and solving the bi-objective minimum diameter-cost spanning tree problem
Andréa Santos (),
Diego Lima () and
Dario Aloise ()
Journal of Global Optimization, 2014, vol. 60, issue 2, 195-216
Abstract:
The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) seeks spanning trees with minimum total cost and minimum diameter. The bi-objective version generalizes the well-known bounded diameter minimum spanning tree problem. The bi-MDCST is a NP-hard problem and models several practical applications in transportation and network design. We propose a bi-objective multiflow formulation for the problem and effective multi-objective metaheuristics: a multi-objective evolutionary algorithm and a fast nondominated sorting genetic algorithm. Some guidelines on how to optimize the problem whenever a priority order can be established between the two objectives are provided. In addition, we present bi-MDCST polynomial cases and theoretical bounds on the search space. Results are reported for four representative test sets. Copyright Springer Science+Business Media New York 2014
Keywords: Spanning trees; Multiflow formulation; Multi-objective metaheuristics; Transportation and network design (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0124-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:60:y:2014:i:2:p:195-216
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-013-0124-4
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().