EconPapers    
Economics at your fingertips  
 

Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

Ivo Couckuyt (), Dirk Deschrijver and Tom Dhaene

Journal of Global Optimization, 2014, vol. 60, issue 3, 575-594

Abstract: The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods. Copyright Springer Science+Business Media New York 2014

Keywords: Multiobjective optimization; Expected improvement; Probability of improvement; Hypervolume; Kriging; Gaussian process (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0118-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:60:y:2014:i:3:p:575-594

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-013-0118-2

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:60:y:2014:i:3:p:575-594