An algorithm for global solution to bi-parametric linear complementarity constrained linear programs
Yu-Ching Lee (),
Jong-Shi Pang and
John Mitchell
Journal of Global Optimization, 2015, vol. 62, issue 2, 263-297
Abstract:
A linear program with linear complementarity constraints (LPCC) is among the simplest mathematical programs with complementarity constraints. Yet the global solution of the LPCC remains difficult to find and/or verify. In this work we study a specific type of the LPCC which we term a bi-parametric LPCC. Reformulating the bi-parametric LPCC as a non-convex quadratically constrained program, we develop a domain-partitioning algorithm that solves a series of the linear subproblems and/or convex quadratically constrained subprograms obtained by the relaxations of the complementarity constraint. The choice of an artificial constants-pair allows us to control the domain on which the partitioning is done. Numerical results of robustly solving 105 randomly generated bi-parametric LPCC instances of different structures associated with different numbers of complementarity constraints by the algorithm are presented. Copyright Springer Science+Business Media New York 2015
Keywords: Mathematical program with complementarity constraints; Bi-parametric program; Domain partitioning; Global optimization algorithm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-014-0228-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:62:y:2015:i:2:p:263-297
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-014-0228-5
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().