A penalty approach to a discretized double obstacle problem with derivative constraints
Song Wang ()
Journal of Global Optimization, 2015, vol. 62, issue 4, 775-790
Abstract:
This work presents a penalty approach to a nonlinear optimization problem with linear box constraints arising from the discretization of an infinite-dimensional differential obstacle problem with bound constraints on derivatives. In this approach, we first propose a penalty equation approximating the mixed nonlinear complementarity problem representing the Karush–Kuhn–Tucker conditions of the optimization problem. We then show that the solution to the penalty equation converges to that of the complementarity problem with an exponential convergence rate depending on the parameters used in the equation. Numerical experiments, carried out on a non-trivial test problem to verify the theoretical finding, show that the computed rates of convergence match the theoretical ones well. Copyright Springer Science+Business Media New York 2015
Keywords: Double obstacle problem; Mixed nonlinear complementarity problem; Variational inequalities; Bounded linear constraints; Global optimizer; Penalty method; Convergence rates (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-014-0262-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:62:y:2015:i:4:p:775-790
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-014-0262-3
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().