EconPapers    
Economics at your fingertips  
 

Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems

Howard Heaton () and Yair Censor ()
Additional contact information
Howard Heaton: University of California Los Angeles
Yair Censor: University of Haifa

Journal of Global Optimization, 2019, vol. 74, issue 1, No 6, 95-119

Abstract: Abstract The common fixed points problem requires finding a point in the intersection of fixed points sets of a finite collection of operators. Quickly solving problems of this sort is of great practical importance for engineering and scientific tasks (e.g., for computed tomography). Iterative methods for solving these problems often employ a Krasnosel’skiĭ–Mann type iteration. We present an asynchronous sequential inertial (ASI) algorithmic framework in a Hilbert space to solve common fixed points problems with a collection of nonexpansive operators. Our scheme allows use of out-of-date iterates when generating updates, thereby enabling processing nodes to work simultaneously and without synchronization. This method also includes inertial type extrapolation terms to increase the speed of convergence. In particular, we extend the application of the recent “ARock algorithm” (Peng et al. in SIAM J Sci Comput 38:A2851–A2879, 2016) in the context of convex feasibility problems. Convergence of the ASI algorithm is proven with no assumption on the distribution of delays, except that they be uniformly bounded. Discussion is provided along with a computational example showing the performance of the ASI algorithm applied in conjunction with a diagonally relaxed orthogonal projections (DROP) algorithm for estimating solutions to large linear systems.

Keywords: Convex feasibility problem; Asynchronous sequential iterations; Nonexpansive operator; Fixed point iteration; Kaczmarz method; DROP algorithm (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-019-00747-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:74:y:2019:i:1:d:10.1007_s10898-019-00747-4

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-019-00747-4

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:74:y:2019:i:1:d:10.1007_s10898-019-00747-4