A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs
Emmanuel Ogbe and
Xiang Li ()
Additional contact information
Emmanuel Ogbe: Queen’s University
Xiang Li: Queen’s University
Journal of Global Optimization, 2019, vol. 75, issue 3, No 2, 595-629
Abstract:
Abstract This paper proposes a joint decomposition method that combines Lagrangian decomposition and generalized Benders decomposition, to efficiently solve multiscenario nonconvex mixed-integer nonlinear programming (MINLP) problems to global optimality, without the need for explicit branch and bound search. In this approach, we view the variables coupling the scenario dependent variables and those causing nonconvexity as complicating variables. We systematically solve the Lagrangian decomposition subproblems and the generalized Benders decomposition subproblems in a unified framework. The method requires the solution of a difficult relaxed master problem, but the problem is only solved when necessary. Enhancements to the method are made to reduce the number of the relaxed master problems to be solved and ease the solution of each relaxed master problem. We consider two scenario-based, two-stage stochastic nonconvex MINLP problems that arise from integrated design and operation of process networks in the case study, and we show that the proposed method can solve the two problems significantly faster than state-of-the-art global optimization solvers.
Keywords: Generalized Benders decomposition; Dantzig–Wolfe decomposition; Lagrangian decomposition; Joint decomposition; Mixed-integer nonlinear programming; Global optimization; Stochastic programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-019-00786-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:75:y:2019:i:3:d:10.1007_s10898-019-00786-x
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-019-00786-x
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().