Tighter McCormick relaxations through subgradient propagation
Jaromił Najman and
Alexander Mitsos ()
Additional contact information
Jaromił Najman: RWTH Aachen University
Alexander Mitsos: RWTH Aachen University
Journal of Global Optimization, 2019, vol. 75, issue 3, No 1, 565-593
Abstract:
Abstract Tight convex and concave relaxations are of high importance in deterministic global optimization. We present a method to tighten relaxations obtained by the McCormick technique. We use the McCormick subgradient propagation (Mitsos et al. in SIAM J Optim 20(2):573–601, 2009) to construct simple affine under- and overestimators of each factor of the original factorable function. Then, we minimize and maximize these affine relaxations in order to obtain possibly improved range bounds for every factor resulting in possibly tighter final McCormick relaxations. We discuss the method and its limitations, in particular the lack of guarantee for improvement. Subsequently, we provide numerical results for benchmark cases found in the MINLPLib2 library and case studies presented in previous works, where the McCormick technique appears to be advantageous, and discuss computational efficiency. We see that the presented algorithm provides a significant improvement in tightness and decrease in computational time, especially in the case studies using the reduced space formulation presented in (Bongartz and Mitsos in J Glob Optim 69:761–796, 2017).
Keywords: Global optimization; McCormick; Range reduction; MAiNGO; 49M20; 49M37; 65K05; 90C26 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-019-00791-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:75:y:2019:i:3:d:10.1007_s10898-019-00791-0
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-019-00791-0
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().