EconPapers    
Economics at your fingertips  
 

An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems

Zhengyong Zhou () and Xiaoyang Dai ()
Additional contact information
Zhengyong Zhou: Shanxi Normal University
Xiaoyang Dai: Shanxi Normal University

Journal of Global Optimization, 2023, vol. 85, issue 2, No 6, 439 pages

Abstract: Abstract In this paper, an active set strategy is presented to address the ill-conditioning of smoothing methods for solving finite linear minimax problems. Based on the first order optimality conditions, a concept of the strongly active set composed of a part of active indexes is introduced. In the active set strategy, a strongly active set is obtained by solving a linear system or a linear programming problem, then an optimal solution with its active set and Lagrange multipliers is computed by an iterative process. A hybrid algorithm combining a smoothing algorithm and the active set strategy is proposed for solving finite linear minimax problems, in which an approximate solution is obtained by the smoothing algorithm, then an optimal solution is computed by the active set strategy. The convergences of the active set strategy and the hybrid algorithm are established for general finite linear minimax problems. Preliminary numerical experiments show that the active set strategy and the hybrid algorithm are effective and robust, and the active set strategy can effectively address the ill-conditioning of smoothing methods for solving general finite linear minimax problems.

Keywords: Minimax problems; Smoothing methods; Ill-conditioning; Active set strategy; Linear programming (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-022-01217-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:85:y:2023:i:2:d:10.1007_s10898-022-01217-0

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-022-01217-0

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:85:y:2023:i:2:d:10.1007_s10898-022-01217-0