EconPapers    
Economics at your fingertips  
 

A fix-and-optimize matheuristic for university timetabling

Michael Lindahl (), Matias Sørensen () and Thomas R. Stidsen ()
Additional contact information
Michael Lindahl: Technical University of Denmark
Matias Sørensen: MaCom A/S
Thomas R. Stidsen: Technical University of Denmark

Journal of Heuristics, 2018, vol. 24, issue 4, No 3, 645-665

Abstract: Abstract University course timetabling covers the task of assigning rooms and time periods to courses while ensuring a minimum violation of soft constraints that define the quality of the timetable. These soft constraints can have attributes that make it difficult for mixed-integer programming solvers to find good solutions fast enough to be used in a practical setting. Therefore, metaheuristics have dominated this area despite the fact that mixed-integer programming solvers have improved tremendously over the last decade. This paper presents a matheuristic where the MIP-solver is guided to find good feasible solutions faster. This makes the matheuristic applicable in practical settings, where mixed-integer programming solvers do not perform well. To the best of our knowledge this is the first matheuristic presented for the University Course Timetabling problem. The matheuristic works as a large neighborhood search where the MIP solver is used to explore a part of the solution space in each iteration. The matheuristic uses problem specific knowledge to fix a number of variables and create smaller problems for the solver to work on, and thereby iteratively improves the solution. Thus we are able to solve very large instances and retrieve good solutions within reasonable time limits. The presented framework is easily extendable due to the flexibility of modeling with MIPs; new constraints and objectives can be added without the need to alter the algorithm itself. At the same time, the matheuristic will benefit from future improvements of MIP solvers. The matheuristic is benchmarked on instances from the literature and the 2nd International Timetabling Competition (ITC2007). Our algorithm gives better solutions than running a state-of-the-art MIP solver directly on the model, especially on larger and more constrained instances. Compared to the winner of ITC2007, the matheuristic performs better. However, the most recent state-of-the-art metaheuristics outperform the matheuristic.

Keywords: Matheuristics; Integer programming; University course timetabling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s10732-018-9371-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joheur:v:24:y:2018:i:4:d:10.1007_s10732-018-9371-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10732

DOI: 10.1007/s10732-018-9371-3

Access Statistics for this article

Journal of Heuristics is currently edited by Manuel Laguna

More articles in Journal of Heuristics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joheur:v:24:y:2018:i:4:d:10.1007_s10732-018-9371-3