Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions
Mojtaba Afzalirad () and
Masoud Shafipour
Additional contact information
Mojtaba Afzalirad: Mazandaran University of Science and Technology
Masoud Shafipour: Mazandaran University of Science and Technology
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 2, No 10, 423-437
Abstract:
Abstract This study addresses a resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions. Majority of the traditional scheduling problems in parallel machine environment deal with machine as the only resource. However, other resources such as labors, tools, jigs, fixtures, pallets, dies, and industrial robots are not only required for processing jobs but also are often restricted. Considering other resources makes the scheduling problems more realistic and practical to implement in manufacturing environments. First, an integer mathematical programming model with the objective of minimizing makespan is developed for this problem. Noteworthy, due to NP-hardness of the considered problem, application of meta-heuristic is avoidable. Furthermore, two new genetic algorithms including a pure genetic algorithm and a genetic algorithm along with a heuristic procedure are proposed to tackle this problem. With regard to the fact that appropriate design of the parameters has a significant effect on the performance of algorithms, hence, we calibrate the parameters of these algorithms by using the response surface method. The performance of the proposed algorithms is evaluated by a number of numerical examples. The computational results demonstrated that the proposed genetic algorithm is an effective and appropriate approach for our investigated problem.
Keywords: Unrelated parallel machine scheduling; Resource constraints; Machine eligibility restriction; Genetic algorithm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-015-1117-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1117-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-015-1117-6
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().