An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal
Huixin Tian (),
Daixu Ren,
Kun Li () and
Zhen Zhao
Additional contact information
Huixin Tian: Tiangong University
Daixu Ren: Tiangong University
Kun Li: Tiangong University
Zhen Zhao: Civil Aviation University of China
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 1, No 3, 37-49
Abstract:
Abstract In industrial production, the characteristics of compressor vibration signal change with the production environment and other external factors. Therefore, to ensure the effectiveness of the model, the vibration signal prediction model needs to be updated constantly. Due to the complex structure of Long Short Term Memory (LSTM) network, the LSTM model is difficult to adapt to the scene of online update. Therefore, the update model based on LSTM is difficult to respond quickly to data changes, which affects the accuracy of the model. To solve this problem, the online learning algorithm is introduced into prediction model, Error-LSTM (E-LSTM) model is proposed in this paper. The main idea of E-LSTM model is to improve the accuracy and efficiency of the model according to test error of the model. First, the hidden layer neurons of LSTM network are divided into blocks, and only part of the modules are activated at each time step. The number of modules activated is determined by test error. Thus, the training speed of the model is accelerated and the efficiency of the model is improved. Second, the E-LSTM model can adaptively adjust the training method according to the data distribution characteristics, so as to improve the accuracy of updated model. In experimental part, two types of datasets are used to verify the performance of the proposed model. LSTM model is used for comparative experiments, and the results showed that the updating model based on E-LSTM is better than that based on LSTM in terms of model accuracy and efficiency.
Keywords: Vibration signal predicting; LSTM network; Test error; Model update; Online learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01556-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01556-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01556-3
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().