Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data
Lucas Costa Brito (),
Márcio Bacci Silva and
Marcus Antonio Viana Duarte
Additional contact information
Lucas Costa Brito: Federal University of Uberlândia (UFU)
Márcio Bacci Silva: Federal University of Uberlândia (UFU)
Marcus Antonio Viana Duarte: Federal University of Uberlândia (UFU)
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 1, No 9, 127-140
Abstract:
Abstract One of the most important parameters in machining process is tool wear. Thus, monitoring the wear of cutting tools is essential to ensure product quality, increase productivity, reduce environmental impact and avoid catastrophic damages. As wear is related to the vibrations of the process, the vibration signal is commonly used to monitor the process non-intrusively. Traditional wear monitoring techniques present a number of problems such as: the difficulty of identifying vibration features sensitive to wear evolution, the specialist requirement for supervising the model training and an endless series of tests to work with balanced data. To overcome these difficulties, this paper aims to propose a new approach in the application of unsupervised artificial intelligence technique with imbalanced data to identify the cutting tool wear condition during the turning process. The methodology will allow industrial applications since no supervision is required in the model training when machining condition is changed. From vibration signals collected during each tool pass, a self-organizing map model was used to identify the ideal moment of tool change. The classifier used was compared to benchmark supervised methods (weighted k-nearest neighbor and support vector machine). Imbalanced data sets were used to simulate the industrial reality. Tool tests were performed under different wear conditions and changing the cutting parameters. The results showed that it is possible to predict the cutting tool wear condition with a self-organizing map neural for imbalanced data, using only the vibration signal with up to 92% accuracy.
Keywords: Tool wear monitoring; Self-organizing map neural network; Imbalanced data; Unsupervised learning; Vibration measurement (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01564-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01564-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01564-3
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().